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Hydromagnetics of a Spherical
Conductor

G. 8. 8. Luprorp* ano M. P. Sineu§
Cornell University, Ithaca, N. Y.

N Refs. 1 and 2 the hydromagnetics of a perfectly con-

ducting sphere moving slowly through a magnetic field
in an arbitrary direction was reconsidered. Stewartson’s
result? is that the liquid inside the cylinder C, circumscrib-
ing the sphere with generators parallel to the applied mag-
netic field (), moves with the sphere as if solid, while the
flow outside C is cylindrical but complicated. Correction
was made of his freatment and, in particular, of this last flow
pattern.

However, as it stands the result is of limited interest, and
it is the object of this note to show that a sphere of arbitrary
nonzero conductivity ultimately behaves in the same way
(in contrast to a monconducting spherel?). In addition,
~ the leading term in the decay of the magnetic disturbance,
which is not the same as for a perfect conductor, will be ob-
tained.

Asin Ref. 1, the steady-state equations

Oh/dz = grade

dive = 0
Ov/0z = 3 curl curlh ()]
divh = 0

E =k X v+ Becurlh

do not determine the ultimate flow pattern. However,
they do imply that the magnetic disturbance h is ultimately
zero. For,asin Ref. 1,

curlcurlh = 0 (2)

in the fluid so that, if it is assumed that the current curlh
vanishes at infinity in planes z = const, a simple argument
using the first of Egs. (1) shows that

curth = 0 3)

everywhere in the fluid. However, (2) also holds inside the
sphere, whatever its conductivity, so that curlh = grad ¢
where V2¢ = 0. Since curl,h is continuous across the sphere,
¢ = const and
curth = 0 divh = 0 @
inside as well as outside the sphere. Together with the
continuity of the magnetic field across the surface this im-
plies that h = 0 everywhere.
In order to determine the ultimate flow pattern when the
sphere (B = [2? 4+ y? -+ 22]Y2 = 1) moves at right angles
(@) to the magnetic field, it is sufficient to show that ulti-
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{ Notation is the same as in Refs. 1 and 2 and familiarity with
these papers is assumed. All variables are nondimensional in
the obvious way. Axes are fixed with respect to the undisturbed
fluid, but with origin instantaneously coincident with the center
of the sphere.
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mately . = 0 on the sphere. Then the boundary conditions
on the governing Egs. (7-9) of Ref. 1 are complete and in-
deed the same as in the perfectly conducting case. For
this purpose, note that the fifth of Eqgs. (1) and Eq. (3) give
the tangential electric field E, = (xv. + yv,)/r in the fluid,
while from Eq. (4) E; = x/r in the sphere,§ since it is a
conductor. Here r = (22 4 y?)V% Continuity of E, across
the surface of the sphere therefore yl'elds 2we + Yy, = 2
while continuity of the normal velocity gives v, —l— yvy, +
zv, = z, 80 that v, = 0 on the surface.

Now consider how h — 0. The two-dimensional parts
ht are determined with v and hence are the same as for a per-
fect conductor (see Appendix to Ref. 1). The discontinuity
in htfor » > 1 on z = 0 is the same as that for the pair of two-
dimensional potential fields == 4/(3w%23Y%?) grad (x/r?)
(z 2 0). It may be removed by adding the pair of three-
dimensional potential fields 4/(3w%23Y2%V2) grad (zz/r*R +
z/r?), i.e.,

h? = —4/ @R (o — y) /R ¥ 1)/rt+
x%/7T?R3)

hP = —4/ GG [2ey(e/R F 1)/t + L
xyz/r*R3]

th = 4/(37r3/2‘81/2t1/2)x/R3 J

everywhere outside the sphere. This is, in fact, the correct
additional field since the total field h¢ -+ h? passes continuously
into the field

he = —82/(3w¥2B121/2)
hy =0 (6)
h, = 4z/(3w¥2p1u) f

satisfying (2) inside the sphere.

Note that (5) and (6), and hence the uniform current (0,
—4/7x32pu%20) flowing through the sphere, are inde-
pendent of the conductivity of the sphere (8 is essentially
the magnetic diffusivity of the liquid). On the other hand,
the corresponding formulas for both a nonconducting and a
perfectly conducting sphere are quite different (see Ref. 1).

The derivation in Ref. 2 of the ultimate flow pattern for
motion along the magnetic field did not involve the con-
ductivity of the sphere. Hence, the same v and h¢ obtain
in the present case: these variables are independent of the
conductivity, be it zero, finite, or infinite. The problem of
determining the potential parts he outside and the potential
fieldll h inside is the same as for an insulator: the total
magnetic field must be continuous across the surface. The
formulas are given in Sec. 4 of Ref. 2.

In a forthcoming paper similar and other results will be
developed for an ellipsoid. ‘
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§ This is the crux of the matter: ultimately there are no cur-
rents in the sphere so that it behaves like a perfect conductor.

|| Because of the axial symmetry, the currents form circles
which do not penetrate the sphere.



